Effect of heparan sulfate and gold nanoparticles on muscle development during embryogenesis

Publikation: Bidrag til tidsskriftTidsskriftartikelfagfællebedømt

  • Marlena Zielinska
  • Ewa Sawosz
  • Marta Grodzik
  • Mateusz Wierzbicki
  • Maria Gromadka
  • Anna Malgorzata Hotowy
  • Filip Sawosz
  • Andrzej Lozicki
  • Chwalibog, André

Purpose: It was hypothesized that heparan sulfate (HS) as an essential compound for myogenesis and nanoparticles of gold (nano-Au) ashighly reactive compounds can affect muscle development as a consequence of molecular regulation of muscle cell formation, and that these effects may be enhanced by a complex of HS conjugated with nano-Au. The objective of the present study was to determine the effect of administration of nano-Au, HS, and a nano-Au+HS complex on the morphological and molecular characteristics of breast muscle during embryogenesis.
Methods: Chicken embryos were used as in vivo model. Fertilized chicken eggs (n = 350) were randomly divided into the control group and the groups treated with nano-Au, HS, and nano-Au+HS. The experimental solutions were given in ovo on the first day of incubation and the embryos were evaluated on day 20 of incubation. The methods included biochemical indices in blood, immunohistochemistry, microscopy (transmission electron microscopy, scanning electron microscopy, confocal), and gene expression at the messenger ribonucleic acid and protein levels.
Results: The treatments did not adversely affect mortality, organ weight, and homeostasis of the embryos. HS stimulated the development and maturation of breast muscle by increasing the number of nuclei, satellite cells, and muscle fibers and affected the expression of basic fibroblast growth factor-2 and paired-box transcription factor-7. Furthermore, the nano-Au+HS complex contributed to the increased number of myocytes and nuclei in chicken embryo muscles.
Conclusion: The results indicate that the administration of HS and nano-Au affects muscle development and that this effect is enhanced by conjugating HS with nano-Au.

OriginalsprogEngelsk
TidsskriftInternational Journal of Nanomedicine (Online)
Vol/bind6
Sider (fra-til)3163-3172
Antal sider10
ISSN1176-9114
DOI
StatusUdgivet - 2011

    Forskningsområder

  • Det tidligere LIFE - gold nanoparticles, heparan sulfate, muscle development, embrygenesis, chicken

ID: 35457201