Foetal life protein restriction in male mink (Neovison vison) kits lowers post-weaning protein oxidation and the relative abundance of hepatic fructose-1,6-bisphosphatase mRNA

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Foetal life protein restriction in male mink (Neovison vison) kits lowers post-weaning protein oxidation and the relative abundance of hepatic fructose-1,6-bisphosphatase mRNA. / Matthiesen, Connie Marianne Frank; Blache, D.; Thomsen, Preben Dybdahl; Tauson, Anne-Helene.

I: Animal, Bind 6, Nr. 1, 2012, s. 50-60.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Matthiesen, CMF, Blache, D, Thomsen, PD & Tauson, A-H 2012, 'Foetal life protein restriction in male mink (Neovison vison) kits lowers post-weaning protein oxidation and the relative abundance of hepatic fructose-1,6-bisphosphatase mRNA', Animal, bind 6, nr. 1, s. 50-60. https://doi.org/10.1017/S1751731111001406

APA

Matthiesen, C. M. F., Blache, D., Thomsen, P. D., & Tauson, A-H. (2012). Foetal life protein restriction in male mink (Neovison vison) kits lowers post-weaning protein oxidation and the relative abundance of hepatic fructose-1,6-bisphosphatase mRNA. Animal, 6(1), 50-60. https://doi.org/10.1017/S1751731111001406

Vancouver

Matthiesen CMF, Blache D, Thomsen PD, Tauson A-H. Foetal life protein restriction in male mink (Neovison vison) kits lowers post-weaning protein oxidation and the relative abundance of hepatic fructose-1,6-bisphosphatase mRNA. Animal. 2012;6(1):50-60. https://doi.org/10.1017/S1751731111001406

Author

Matthiesen, Connie Marianne Frank ; Blache, D. ; Thomsen, Preben Dybdahl ; Tauson, Anne-Helene. / Foetal life protein restriction in male mink (Neovison vison) kits lowers post-weaning protein oxidation and the relative abundance of hepatic fructose-1,6-bisphosphatase mRNA. I: Animal. 2012 ; Bind 6, Nr. 1. s. 50-60.

Bibtex

@article{2b98c1f4ae154b8f9c7b9832d0a787d9,
title = "Foetal life protein restriction in male mink (Neovison vison) kits lowers post-weaning protein oxidation and the relative abundance of hepatic fructose-1,6-bisphosphatase mRNA",
abstract = "Foetal life malnutrition has been studied intensively in a number of animal models. Results show that especially foetal life protein malnutrition can lead to metabolic changes later in life. This might be of particular importance for strict carnivores, for example, cat and mink (Neovison vison) because of their higher protein requirement than in other domestic mammals. This study aimed to investigate the effects of low protein provision during foetal life to male mink kits on their protein metabolism during the early post-weaning period of rapid growth and to investigate whether foetal life protein deficiency affects the response to adequate or deficient protein provision post weaning. Further, we intended to study whether the changes in the gene expression of key enzymes in foetal hepatic tissue caused by maternal protein deficiency were manifested post-weaning. A total of 32 male mink kits born to mothers fed either a low-protein diet (LP), that is, 14% of metabolizable energy (ME) from protein (foetal low – FL), n = 16, or an adequate-protein (AP) diet, that is, 29% of ME from protein (foetal adequate – FA), n = 16) in the last 16.3 ± 1.8 days of pregnancy were used. The FL offspring had lower birth weight and lower relative abundance of fructose-1,6-bisphosphatase (Fru-1,6-P2ase) and pyruvate kinase mRNA in foetal hepatic tissue than FA kits. The mothers were fed a diet containing adequate protein until weaning. At weaning (7 weeks of age), half of the kits from each foetal treatment group were fed an AP diet (32% of ME from protein; n = 8 FA and 8 FL) and the other half were fed a LP diet (18% of ME from protein; n = 8 FA and 8 FL) until 9.5 weeks of age, yielding four treatment groups (i.e. FA-AP, FA-LP, FL-AP and FL-LP). Low protein provision in foetal life lowered the protein oxidation post-weaning compared with the controls (P = 0.006), indicating metabolic flexibility and a better ability to conserve protein. This could not, however, be supported by changes in liver mass because of foetal life experience. A lower relative abundance of Fru-1,6-P2ase mRNA was observed (P < 0.05), being lower in 9.5-week-old FL than in FA kits. It can be concluded that foetal life protein restriction leads to changes in post-weaning protein metabolism through lower protein oxidation of male mink kits.",
keywords = "Former LIFE faculty, protein oxidation, protein restriction, nitrogen metabolism, metablic flexibility, energy metabolism",
author = "Matthiesen, {Connie Marianne Frank} and D. Blache and Thomsen, {Preben Dybdahl} and Anne-Helene Tauson",
year = "2012",
doi = "10.1017/S1751731111001406",
language = "English",
volume = "6",
pages = "50--60",
journal = "Animal",
issn = "1751-7311",
publisher = "Cambridge University Press",
number = "1",

}

RIS

TY - JOUR

T1 - Foetal life protein restriction in male mink (Neovison vison) kits lowers post-weaning protein oxidation and the relative abundance of hepatic fructose-1,6-bisphosphatase mRNA

AU - Matthiesen, Connie Marianne Frank

AU - Blache, D.

AU - Thomsen, Preben Dybdahl

AU - Tauson, Anne-Helene

PY - 2012

Y1 - 2012

N2 - Foetal life malnutrition has been studied intensively in a number of animal models. Results show that especially foetal life protein malnutrition can lead to metabolic changes later in life. This might be of particular importance for strict carnivores, for example, cat and mink (Neovison vison) because of their higher protein requirement than in other domestic mammals. This study aimed to investigate the effects of low protein provision during foetal life to male mink kits on their protein metabolism during the early post-weaning period of rapid growth and to investigate whether foetal life protein deficiency affects the response to adequate or deficient protein provision post weaning. Further, we intended to study whether the changes in the gene expression of key enzymes in foetal hepatic tissue caused by maternal protein deficiency were manifested post-weaning. A total of 32 male mink kits born to mothers fed either a low-protein diet (LP), that is, 14% of metabolizable energy (ME) from protein (foetal low – FL), n = 16, or an adequate-protein (AP) diet, that is, 29% of ME from protein (foetal adequate – FA), n = 16) in the last 16.3 ± 1.8 days of pregnancy were used. The FL offspring had lower birth weight and lower relative abundance of fructose-1,6-bisphosphatase (Fru-1,6-P2ase) and pyruvate kinase mRNA in foetal hepatic tissue than FA kits. The mothers were fed a diet containing adequate protein until weaning. At weaning (7 weeks of age), half of the kits from each foetal treatment group were fed an AP diet (32% of ME from protein; n = 8 FA and 8 FL) and the other half were fed a LP diet (18% of ME from protein; n = 8 FA and 8 FL) until 9.5 weeks of age, yielding four treatment groups (i.e. FA-AP, FA-LP, FL-AP and FL-LP). Low protein provision in foetal life lowered the protein oxidation post-weaning compared with the controls (P = 0.006), indicating metabolic flexibility and a better ability to conserve protein. This could not, however, be supported by changes in liver mass because of foetal life experience. A lower relative abundance of Fru-1,6-P2ase mRNA was observed (P < 0.05), being lower in 9.5-week-old FL than in FA kits. It can be concluded that foetal life protein restriction leads to changes in post-weaning protein metabolism through lower protein oxidation of male mink kits.

AB - Foetal life malnutrition has been studied intensively in a number of animal models. Results show that especially foetal life protein malnutrition can lead to metabolic changes later in life. This might be of particular importance for strict carnivores, for example, cat and mink (Neovison vison) because of their higher protein requirement than in other domestic mammals. This study aimed to investigate the effects of low protein provision during foetal life to male mink kits on their protein metabolism during the early post-weaning period of rapid growth and to investigate whether foetal life protein deficiency affects the response to adequate or deficient protein provision post weaning. Further, we intended to study whether the changes in the gene expression of key enzymes in foetal hepatic tissue caused by maternal protein deficiency were manifested post-weaning. A total of 32 male mink kits born to mothers fed either a low-protein diet (LP), that is, 14% of metabolizable energy (ME) from protein (foetal low – FL), n = 16, or an adequate-protein (AP) diet, that is, 29% of ME from protein (foetal adequate – FA), n = 16) in the last 16.3 ± 1.8 days of pregnancy were used. The FL offspring had lower birth weight and lower relative abundance of fructose-1,6-bisphosphatase (Fru-1,6-P2ase) and pyruvate kinase mRNA in foetal hepatic tissue than FA kits. The mothers were fed a diet containing adequate protein until weaning. At weaning (7 weeks of age), half of the kits from each foetal treatment group were fed an AP diet (32% of ME from protein; n = 8 FA and 8 FL) and the other half were fed a LP diet (18% of ME from protein; n = 8 FA and 8 FL) until 9.5 weeks of age, yielding four treatment groups (i.e. FA-AP, FA-LP, FL-AP and FL-LP). Low protein provision in foetal life lowered the protein oxidation post-weaning compared with the controls (P = 0.006), indicating metabolic flexibility and a better ability to conserve protein. This could not, however, be supported by changes in liver mass because of foetal life experience. A lower relative abundance of Fru-1,6-P2ase mRNA was observed (P < 0.05), being lower in 9.5-week-old FL than in FA kits. It can be concluded that foetal life protein restriction leads to changes in post-weaning protein metabolism through lower protein oxidation of male mink kits.

KW - Former LIFE faculty

KW - protein oxidation

KW - protein restriction

KW - nitrogen metabolism

KW - metablic flexibility

KW - energy metabolism

U2 - 10.1017/S1751731111001406

DO - 10.1017/S1751731111001406

M3 - Journal article

C2 - 22436154

VL - 6

SP - 50

EP - 60

JO - Animal

JF - Animal

SN - 1751-7311

IS - 1

ER -

ID: 37581503