Profiling microRNAs in lung tissue from pigs infected with Actinobacillus pleuropneumoniae

Publikation: Bidrag til tidsskriftTidsskriftartikelfagfællebedømt

Standard

Profiling microRNAs in lung tissue from pigs infected with Actinobacillus pleuropneumoniae. / Podolska, Agnieszka; Anthon, Christian; Bak, Mads; Tommerup, Niels; Skovgaard, Kerstin; Heegaard, Peter Mh; Gorodkin, Jan; Cirera, Susanna; Fredholm, Merete.

I: B M C Genomics, Bind 13, Nr. 1, 09.2012, s. 459.

Publikation: Bidrag til tidsskriftTidsskriftartikelfagfællebedømt

Harvard

Podolska, A, Anthon, C, Bak, M, Tommerup, N, Skovgaard, K, Heegaard, PM, Gorodkin, J, Cirera, S & Fredholm, M 2012, 'Profiling microRNAs in lung tissue from pigs infected with Actinobacillus pleuropneumoniae', B M C Genomics, bind 13, nr. 1, s. 459. https://doi.org/10.1186/1471-2164-13-459

APA

Podolska, A., Anthon, C., Bak, M., Tommerup, N., Skovgaard, K., Heegaard, P. M., Gorodkin, J., Cirera, S., & Fredholm, M. (2012). Profiling microRNAs in lung tissue from pigs infected with Actinobacillus pleuropneumoniae. B M C Genomics, 13(1), 459. https://doi.org/10.1186/1471-2164-13-459

Vancouver

Podolska A, Anthon C, Bak M, Tommerup N, Skovgaard K, Heegaard PM o.a. Profiling microRNAs in lung tissue from pigs infected with Actinobacillus pleuropneumoniae. B M C Genomics. 2012 sep.;13(1):459. https://doi.org/10.1186/1471-2164-13-459

Author

Podolska, Agnieszka ; Anthon, Christian ; Bak, Mads ; Tommerup, Niels ; Skovgaard, Kerstin ; Heegaard, Peter Mh ; Gorodkin, Jan ; Cirera, Susanna ; Fredholm, Merete. / Profiling microRNAs in lung tissue from pigs infected with Actinobacillus pleuropneumoniae. I: B M C Genomics. 2012 ; Bind 13, Nr. 1. s. 459.

Bibtex

@article{4040710e70bc4ccaa8a65032f2962633,
title = "Profiling microRNAs in lung tissue from pigs infected with Actinobacillus pleuropneumoniae",
abstract = "ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) are a class of non-protein-coding genes that play a crucial regulatory role in mammalian development and disease. Whereas a large number of miRNAs have been annotated at the structural level during the latest years, functional annotation is sparse. Actinobacillus pleuropneumoniae (APP) causes serious lung infections in pigs. Severe damage to the lungs, in many cases deadly, is caused by toxins released by the bacterium and to some degree by host mediated tissue damage. However, understanding of the role of microRNAs in the course of this infectious disease in porcine is still very limited. RESULTS: In this study, the RNA extracted from visually unaffected and necrotic tissue from pigs infected with Actinobacillus pleuropneumoniae was subjected to small RNA deep sequencing. We identified 169 conserved and 11 candidate novel microRNAs in the pig. Of these, 17 were significantly up-regulated in the necrotic sample and 12 were down-regulated. The expression analysis of a number of candidates revealed microRNAs of potential importance in the innate immune response. MiR-155, a known key player in inflammation, was found expressed in both samples. Moreover, miR-664-5p, miR-451 and miR-15a appear as very promising candidates for microRNAs involved in response to pathogen infection. CONCLUSIONS: This is the first study revealing significant differences in composition and expression profiles of miRNAs in lungs infected with a bacterial pathogen. Our results extend annotation of microRNA in pig and provide insight into the role of a number of microRNAs in regulation of bacteria induced immune and inflammatory response in porcine lung.",
author = "Agnieszka Podolska and Christian Anthon and Mads Bak and Niels Tommerup and Kerstin Skovgaard and Heegaard, {Peter Mh} and Jan Gorodkin and Susanna Cirera and Merete Fredholm",
year = "2012",
month = sep,
doi = "10.1186/1471-2164-13-459",
language = "English",
volume = "13",
pages = "459",
journal = "BMC Genomics",
issn = "1471-2164",
publisher = "BioMed Central Ltd.",
number = "1",

}

RIS

TY - JOUR

T1 - Profiling microRNAs in lung tissue from pigs infected with Actinobacillus pleuropneumoniae

AU - Podolska, Agnieszka

AU - Anthon, Christian

AU - Bak, Mads

AU - Tommerup, Niels

AU - Skovgaard, Kerstin

AU - Heegaard, Peter Mh

AU - Gorodkin, Jan

AU - Cirera, Susanna

AU - Fredholm, Merete

PY - 2012/9

Y1 - 2012/9

N2 - ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) are a class of non-protein-coding genes that play a crucial regulatory role in mammalian development and disease. Whereas a large number of miRNAs have been annotated at the structural level during the latest years, functional annotation is sparse. Actinobacillus pleuropneumoniae (APP) causes serious lung infections in pigs. Severe damage to the lungs, in many cases deadly, is caused by toxins released by the bacterium and to some degree by host mediated tissue damage. However, understanding of the role of microRNAs in the course of this infectious disease in porcine is still very limited. RESULTS: In this study, the RNA extracted from visually unaffected and necrotic tissue from pigs infected with Actinobacillus pleuropneumoniae was subjected to small RNA deep sequencing. We identified 169 conserved and 11 candidate novel microRNAs in the pig. Of these, 17 were significantly up-regulated in the necrotic sample and 12 were down-regulated. The expression analysis of a number of candidates revealed microRNAs of potential importance in the innate immune response. MiR-155, a known key player in inflammation, was found expressed in both samples. Moreover, miR-664-5p, miR-451 and miR-15a appear as very promising candidates for microRNAs involved in response to pathogen infection. CONCLUSIONS: This is the first study revealing significant differences in composition and expression profiles of miRNAs in lungs infected with a bacterial pathogen. Our results extend annotation of microRNA in pig and provide insight into the role of a number of microRNAs in regulation of bacteria induced immune and inflammatory response in porcine lung.

AB - ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) are a class of non-protein-coding genes that play a crucial regulatory role in mammalian development and disease. Whereas a large number of miRNAs have been annotated at the structural level during the latest years, functional annotation is sparse. Actinobacillus pleuropneumoniae (APP) causes serious lung infections in pigs. Severe damage to the lungs, in many cases deadly, is caused by toxins released by the bacterium and to some degree by host mediated tissue damage. However, understanding of the role of microRNAs in the course of this infectious disease in porcine is still very limited. RESULTS: In this study, the RNA extracted from visually unaffected and necrotic tissue from pigs infected with Actinobacillus pleuropneumoniae was subjected to small RNA deep sequencing. We identified 169 conserved and 11 candidate novel microRNAs in the pig. Of these, 17 were significantly up-regulated in the necrotic sample and 12 were down-regulated. The expression analysis of a number of candidates revealed microRNAs of potential importance in the innate immune response. MiR-155, a known key player in inflammation, was found expressed in both samples. Moreover, miR-664-5p, miR-451 and miR-15a appear as very promising candidates for microRNAs involved in response to pathogen infection. CONCLUSIONS: This is the first study revealing significant differences in composition and expression profiles of miRNAs in lungs infected with a bacterial pathogen. Our results extend annotation of microRNA in pig and provide insight into the role of a number of microRNAs in regulation of bacteria induced immune and inflammatory response in porcine lung.

U2 - 10.1186/1471-2164-13-459

DO - 10.1186/1471-2164-13-459

M3 - Journal article

C2 - 22953717

VL - 13

SP - 459

JO - BMC Genomics

JF - BMC Genomics

SN - 1471-2164

IS - 1

ER -

ID: 40841147