Course description
Simulation modeling is an approach often used in the veterinary and human medicine for modeling disease spread and control. The course will focus on fundamental concepts in modeling. It will teach the student how to structure a system into a simulation model and the fundamental aspects that must be considered when building a simulation model of disease spread. The student will learn how to model diseases using SIS, SIR and SEIR infection model structures. Students will be introduced to modelling using difference and differential equations as well as mechanistic modelling. An important part of simulation is how to present model results in a clear and coherent way. Students will learn how to collect the results either during the simulations or after, and to present them in tables and graphics.

Course requirements
Basic knowledge and experience of programming using the software R.

Learning objectives
Students who have met the course objectives will be able to:
- Construct a simple deterministic model
- Construct a dynamic simulation model using difference and differential equations
- Construct a stochastic and dynamic mechanistic simulation model
- Select appropriate infection models
- Model different mechanisms of disease spread between individuals as well as disease control
- Collect the results from the simulations in a sound way and present them visually

Course materials
Complete notes, R code, relevant scientific papers

Course information
Course language: English
ECTS points: 5
Target group: Post-graduate students in veterinary and medical infectious diseases fields
Location: Camperdown Campus and on-line
Fee: AUD 500
Teaching form: E-learning and on-site lectures, computer exercises and group work.
Duration:
1 week off-site self-study (during 3—21 June 2019)
1 week of on-site teaching including lectures and group work (24-28 June 2019)
1 week off-site work on own project (1-5 July 2019)
Assessment: Evaluation of an assignment.
Aid: None
Evaluation: Passed/Not passed, internal examiner (final report provided)
Contact: Professor Michael Ward, michael.ward@sydney.edu.au

This course is partly funded by a Partnership Collaboration Award between the University of Copenhagen and The University of Sydney, and will only be presented in 2019

Instructors
Michael Ward, Professor, University of Sydney  michael.ward@sydney.edu.au (Contact person)
Victoria Brookes, Research Fellow, University of Sydney  victoria.brookes@sydney.edu.au
Carsten Kirkeby, Senior Researcher, University of Copenhagen  ckir@sund.ku.dk
Tariq Halasa, Professor, University of Copenhagen  tariq.halasa@sund.ku.dk

CRICOS 00026A