Antimicrobial Resistance and Virulence Gene Profiles of Methicillin-Resistant and -Susceptible Staphylococcus aureus From Food Products in Denmark

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Antimicrobial Resistance and Virulence Gene Profiles of Methicillin-Resistant and -Susceptible Staphylococcus aureus From Food Products in Denmark. / Li, Heng; Andersen, Paal Skytt; Stegger, Marc; Sieber, Raphael N.; Ingmer, Hanne; Staubrand, Nicholas; Dalsgaard, Anders; Leisner, Jørgen J.

In: Frontiers in Microbiology, Vol. 10, 2681, 2019.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Li, H, Andersen, PS, Stegger, M, Sieber, RN, Ingmer, H, Staubrand, N, Dalsgaard, A & Leisner, JJ 2019, 'Antimicrobial Resistance and Virulence Gene Profiles of Methicillin-Resistant and -Susceptible Staphylococcus aureus From Food Products in Denmark', Frontiers in Microbiology, vol. 10, 2681. https://doi.org/10.3389/fmicb.2019.02681

APA

Li, H., Andersen, P. S., Stegger, M., Sieber, R. N., Ingmer, H., Staubrand, N., Dalsgaard, A., & Leisner, J. J. (2019). Antimicrobial Resistance and Virulence Gene Profiles of Methicillin-Resistant and -Susceptible Staphylococcus aureus From Food Products in Denmark. Frontiers in Microbiology, 10, [2681]. https://doi.org/10.3389/fmicb.2019.02681

Vancouver

Li H, Andersen PS, Stegger M, Sieber RN, Ingmer H, Staubrand N et al. Antimicrobial Resistance and Virulence Gene Profiles of Methicillin-Resistant and -Susceptible Staphylococcus aureus From Food Products in Denmark. Frontiers in Microbiology. 2019;10. 2681. https://doi.org/10.3389/fmicb.2019.02681

Author

Li, Heng ; Andersen, Paal Skytt ; Stegger, Marc ; Sieber, Raphael N. ; Ingmer, Hanne ; Staubrand, Nicholas ; Dalsgaard, Anders ; Leisner, Jørgen J. / Antimicrobial Resistance and Virulence Gene Profiles of Methicillin-Resistant and -Susceptible Staphylococcus aureus From Food Products in Denmark. In: Frontiers in Microbiology. 2019 ; Vol. 10.

Bibtex

@article{01d2b0893041492cbced4812439dafe2,
title = "Antimicrobial Resistance and Virulence Gene Profiles of Methicillin-Resistant and -Susceptible Staphylococcus aureus From Food Products in Denmark",
abstract = "Foods may potentially serve as vehicles for the transmission of antimicrobial-resistant variants of Staphylococcus aureus that are important in a human clinical context. Further, retail food products can be a cause of staphylococcal food poisoning. For these reasons and to account for source attribution and risk assessment, detailed information on the population structure, resistance, and virulence profiles of S. aureus originating from retail food products is necessary. In the current study, whole-genome sequences from 88 S. aureus isolates were subjected to bioinformatics analyses in relation to sequence types, antimicrobial resistance, and virulence profiles. The sequence types (ST) identified belonged to 13 clonal complexes (CC) with CC5 and CC398 being the most common. CC398 was identified as the dominant clone (n = 31). CC5 was identified as of avian origin, with the presence of φAVβ prophage genes (n = 13). In total, 39.8% of the isolates contained multiple resistance genes, and methicillin-resistant Staphylococcus aureus (MRSA) isolates were found in CC8, CC9, and CC398. Genes conferring resistance to the antimicrobial classes of β-lactams, tetracycline, and erythromycin were detected in this study, all of which are commonly used in Danish livestock production. The tst gene encoding the toxic shock syndrome toxin was for the first time identified in ST398 isolates, probably as a result of a single acquisition of a SaPI-like element. The sushi-CC398 isolates carrying the scn gene likely originated from a human reservoir, while the other isolates originated from livestock. Taken together, our results show that both human and animal reservoirs contribute to contamination in food products and that retail foods may serve as a vehicle of S. aureus between livestock and humans.",
keywords = "antibiotic resistance, CC types, MRSA, MSSA, ready-to-eat food, retail meat, Staphylococcus aureus, toxin genes",
author = "Heng Li and Andersen, {Paal Skytt} and Marc Stegger and Sieber, {Raphael N.} and Hanne Ingmer and Nicholas Staubrand and Anders Dalsgaard and Leisner, {J{\o}rgen J.}",
year = "2019",
doi = "10.3389/fmicb.2019.02681",
language = "English",
volume = "10",
journal = "Frontiers in Microbiology",
issn = "1664-302X",
publisher = "Frontiers Media S.A.",

}

RIS

TY - JOUR

T1 - Antimicrobial Resistance and Virulence Gene Profiles of Methicillin-Resistant and -Susceptible Staphylococcus aureus From Food Products in Denmark

AU - Li, Heng

AU - Andersen, Paal Skytt

AU - Stegger, Marc

AU - Sieber, Raphael N.

AU - Ingmer, Hanne

AU - Staubrand, Nicholas

AU - Dalsgaard, Anders

AU - Leisner, Jørgen J.

PY - 2019

Y1 - 2019

N2 - Foods may potentially serve as vehicles for the transmission of antimicrobial-resistant variants of Staphylococcus aureus that are important in a human clinical context. Further, retail food products can be a cause of staphylococcal food poisoning. For these reasons and to account for source attribution and risk assessment, detailed information on the population structure, resistance, and virulence profiles of S. aureus originating from retail food products is necessary. In the current study, whole-genome sequences from 88 S. aureus isolates were subjected to bioinformatics analyses in relation to sequence types, antimicrobial resistance, and virulence profiles. The sequence types (ST) identified belonged to 13 clonal complexes (CC) with CC5 and CC398 being the most common. CC398 was identified as the dominant clone (n = 31). CC5 was identified as of avian origin, with the presence of φAVβ prophage genes (n = 13). In total, 39.8% of the isolates contained multiple resistance genes, and methicillin-resistant Staphylococcus aureus (MRSA) isolates were found in CC8, CC9, and CC398. Genes conferring resistance to the antimicrobial classes of β-lactams, tetracycline, and erythromycin were detected in this study, all of which are commonly used in Danish livestock production. The tst gene encoding the toxic shock syndrome toxin was for the first time identified in ST398 isolates, probably as a result of a single acquisition of a SaPI-like element. The sushi-CC398 isolates carrying the scn gene likely originated from a human reservoir, while the other isolates originated from livestock. Taken together, our results show that both human and animal reservoirs contribute to contamination in food products and that retail foods may serve as a vehicle of S. aureus between livestock and humans.

AB - Foods may potentially serve as vehicles for the transmission of antimicrobial-resistant variants of Staphylococcus aureus that are important in a human clinical context. Further, retail food products can be a cause of staphylococcal food poisoning. For these reasons and to account for source attribution and risk assessment, detailed information on the population structure, resistance, and virulence profiles of S. aureus originating from retail food products is necessary. In the current study, whole-genome sequences from 88 S. aureus isolates were subjected to bioinformatics analyses in relation to sequence types, antimicrobial resistance, and virulence profiles. The sequence types (ST) identified belonged to 13 clonal complexes (CC) with CC5 and CC398 being the most common. CC398 was identified as the dominant clone (n = 31). CC5 was identified as of avian origin, with the presence of φAVβ prophage genes (n = 13). In total, 39.8% of the isolates contained multiple resistance genes, and methicillin-resistant Staphylococcus aureus (MRSA) isolates were found in CC8, CC9, and CC398. Genes conferring resistance to the antimicrobial classes of β-lactams, tetracycline, and erythromycin were detected in this study, all of which are commonly used in Danish livestock production. The tst gene encoding the toxic shock syndrome toxin was for the first time identified in ST398 isolates, probably as a result of a single acquisition of a SaPI-like element. The sushi-CC398 isolates carrying the scn gene likely originated from a human reservoir, while the other isolates originated from livestock. Taken together, our results show that both human and animal reservoirs contribute to contamination in food products and that retail foods may serve as a vehicle of S. aureus between livestock and humans.

KW - antibiotic resistance

KW - CC types

KW - MRSA

KW - MSSA

KW - ready-to-eat food

KW - retail meat

KW - Staphylococcus aureus

KW - toxin genes

U2 - 10.3389/fmicb.2019.02681

DO - 10.3389/fmicb.2019.02681

M3 - Journal article

C2 - 31920996

AN - SCOPUS:85077247860

VL - 10

JO - Frontiers in Microbiology

JF - Frontiers in Microbiology

SN - 1664-302X

M1 - 2681

ER -

ID: 234208216