In silico prediction and prioritization of novel selective antimicrobial drug targets in escherichia coli

Research output: Contribution to journalJournal articleResearchpeer-review

Novel antimicrobials interfering with pathogen-specific targets can minimize the risk of perturbations of the gut microbiota (dysbiosis) during therapy. We employed an in silico approach to identify essential proteins in Escherichia coli that are either absent or have low sequence identity in seven beneficial taxa of the gut microbiota: Faecalibacterium, Prevotella, Ruminococcus, Bacteroides, Lactobacillus, Lachnospiraceae and Bifidobacterium. We identified 36 essential proteins that are present in hyper-virulent E. coli ST131 and have low similarity (bitscore < 50 or identity < 30% and alignment length < 25%) to proteins in mammalian hosts and beneficial taxa. Of these, 35 are also present in Klebsiella pneumoniae. None of the proteins are targets of clinically used antibiotics, and 3D structure is available for 23 of them. Four proteins (LptD, LptE, LolB and BamD) are easily accessible as drug targets due to their location in the outer membrane, especially LptD, which contains extracellular domains. Our results indicate that it may be possible to selectively interfere with essential biological processes in Enterobacteriaceae that are absent or mediated by unrelated proteins in beneficial taxa residing in the gut. The identified targets can be used to discover antimicrobial drugs effective against these opportunistic pathogens with a decreased risk of causing dysbiosis.

Original languageEnglish
Article number632
JournalAntibiotics
Volume10
Issue number6
ISSN2079-6382
DOIs
Publication statusPublished - 2021

Bibliographical note

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

    Research areas

  • Antimicrobial targets, Escherichia coli, In silico, Microbiota

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 273299340