Microclimatic temperatures at Danish cattle farms, 2000–2016: quantifying the temporal and spatial variation in the transmission potential of Schmallenberg virus

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Microclimatic temperatures at Danish cattle farms, 2000–2016 : quantifying the temporal and spatial variation in the transmission potential of Schmallenberg virus. / Haider, Najmul; Cuellar, Ana Carolina; Kjær, Lene Jung; Sørensen, Jens Havskov; Bødker, René.

I: Parasites & Vectors, Bind 11, 128, 2018.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Haider, N, Cuellar, AC, Kjær, LJ, Sørensen, JH & Bødker, R 2018, 'Microclimatic temperatures at Danish cattle farms, 2000–2016: quantifying the temporal and spatial variation in the transmission potential of Schmallenberg virus', Parasites & Vectors, bind 11, 128. https://doi.org/10.1186/s13071-018-2709-8

APA

Haider, N., Cuellar, A. C., Kjær, L. J., Sørensen, J. H., & Bødker, R. (2018). Microclimatic temperatures at Danish cattle farms, 2000–2016: quantifying the temporal and spatial variation in the transmission potential of Schmallenberg virus. Parasites & Vectors, 11, [128]. https://doi.org/10.1186/s13071-018-2709-8

Vancouver

Haider N, Cuellar AC, Kjær LJ, Sørensen JH, Bødker R. Microclimatic temperatures at Danish cattle farms, 2000–2016: quantifying the temporal and spatial variation in the transmission potential of Schmallenberg virus. Parasites & Vectors. 2018;11. 128. https://doi.org/10.1186/s13071-018-2709-8

Author

Haider, Najmul ; Cuellar, Ana Carolina ; Kjær, Lene Jung ; Sørensen, Jens Havskov ; Bødker, René. / Microclimatic temperatures at Danish cattle farms, 2000–2016 : quantifying the temporal and spatial variation in the transmission potential of Schmallenberg virus. I: Parasites & Vectors. 2018 ; Bind 11.

Bibtex

@article{4d432e95045343c087cab9e77e1ed7db,
title = "Microclimatic temperatures at Danish cattle farms, 2000–2016: quantifying the temporal and spatial variation in the transmission potential of Schmallenberg virus",
abstract = "BackgroundMicroclimatic temperatures provide better estimates of vector-borne disease transmission parameters than standard meteorological temperatures, as the microclimate represent the actual temperatures to which the vectors are exposed. The objectives of this study were to quantify farm-level geographic variations and temporal patterns in the extrinsic incubation period (EIP) of Schmallenberg virus transmitted by Culicoides in Denmark through generation of microclimatic temperatures surrounding all Danish cattle farms.MethodsWe calculated the hourly microclimatic temperatures at potential vector-resting sites within a 500 m radius of 22,004 Danish cattle farms for the months April to November from 2000 to 2016. We then modeled the daily EIP of Schmallenberg virus at each farm, assuming vectors choose resting sites either randomly or based on temperatures (warmest or coolest available) every hour. The results of the model output are presented as 17-year averages.ResultsThe difference between the warmest and coolest microhabitats at the same farm was on average 3.7 °C (5th and 95th percentiles: 1.0 °C to 7.8 °C). The mean EIP of Schmallenberg virus (5th and 95th percentiles) for all cattle farms during spring, summer, and autumn was: 23 (18–33), 14 (12–18) and 51 (48–55) days, respectively, assuming Culicoides select resting sites randomly. These estimated EIP values were considerably shorter than those estimated using standard meteorological temperatures obtained from a numerical weather prediction model for the same periods: 43 (39–52), 21 (17–24) and 57 (55–58) days, respectively. When assuming that vectors actively select the coolest resting sites at a farm, the EIP was 2.3 (range: 1.1 to 4.1) times longer compared to that of the warmest sites at the same farm.ConclusionsWe estimated a wide range of EIP in different microclimatic habitats surrounding Danish cattle farms, stressing the importance of identifying the specific resting sites of vectors when modeling vector-borne disease transmission. We found a large variation in the EIP among different farms, suggesting disease transmission may vary substantially between regions, even within a small country. Our findings could be useful for designing risk-based surveillance, and in the control and prevention of emerging and re-emerging vector-borne diseases.",
keywords = "Schmallenberg virus, Microclimatic temperatures, EIP, Spatio-temporal modeling, Denmark, Vector-borne diseases, Transmission, Cattle farm, Culicoides spp., Resting sites",
author = "Najmul Haider and Cuellar, {Ana Carolina} and Kj{\ae}r, {Lene Jung} and S{\o}rensen, {Jens Havskov} and Ren{\'e} B{\o}dker",
note = "This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.",
year = "2018",
doi = "10.1186/s13071-018-2709-8",
language = "English",
volume = "11",
journal = "Parasites & Vectors",
issn = "1756-3305",
publisher = "BioMed Central",

}

RIS

TY - JOUR

T1 - Microclimatic temperatures at Danish cattle farms, 2000–2016

T2 - quantifying the temporal and spatial variation in the transmission potential of Schmallenberg virus

AU - Haider, Najmul

AU - Cuellar, Ana Carolina

AU - Kjær, Lene Jung

AU - Sørensen, Jens Havskov

AU - Bødker, René

N1 - This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

PY - 2018

Y1 - 2018

N2 - BackgroundMicroclimatic temperatures provide better estimates of vector-borne disease transmission parameters than standard meteorological temperatures, as the microclimate represent the actual temperatures to which the vectors are exposed. The objectives of this study were to quantify farm-level geographic variations and temporal patterns in the extrinsic incubation period (EIP) of Schmallenberg virus transmitted by Culicoides in Denmark through generation of microclimatic temperatures surrounding all Danish cattle farms.MethodsWe calculated the hourly microclimatic temperatures at potential vector-resting sites within a 500 m radius of 22,004 Danish cattle farms for the months April to November from 2000 to 2016. We then modeled the daily EIP of Schmallenberg virus at each farm, assuming vectors choose resting sites either randomly or based on temperatures (warmest or coolest available) every hour. The results of the model output are presented as 17-year averages.ResultsThe difference between the warmest and coolest microhabitats at the same farm was on average 3.7 °C (5th and 95th percentiles: 1.0 °C to 7.8 °C). The mean EIP of Schmallenberg virus (5th and 95th percentiles) for all cattle farms during spring, summer, and autumn was: 23 (18–33), 14 (12–18) and 51 (48–55) days, respectively, assuming Culicoides select resting sites randomly. These estimated EIP values were considerably shorter than those estimated using standard meteorological temperatures obtained from a numerical weather prediction model for the same periods: 43 (39–52), 21 (17–24) and 57 (55–58) days, respectively. When assuming that vectors actively select the coolest resting sites at a farm, the EIP was 2.3 (range: 1.1 to 4.1) times longer compared to that of the warmest sites at the same farm.ConclusionsWe estimated a wide range of EIP in different microclimatic habitats surrounding Danish cattle farms, stressing the importance of identifying the specific resting sites of vectors when modeling vector-borne disease transmission. We found a large variation in the EIP among different farms, suggesting disease transmission may vary substantially between regions, even within a small country. Our findings could be useful for designing risk-based surveillance, and in the control and prevention of emerging and re-emerging vector-borne diseases.

AB - BackgroundMicroclimatic temperatures provide better estimates of vector-borne disease transmission parameters than standard meteorological temperatures, as the microclimate represent the actual temperatures to which the vectors are exposed. The objectives of this study were to quantify farm-level geographic variations and temporal patterns in the extrinsic incubation period (EIP) of Schmallenberg virus transmitted by Culicoides in Denmark through generation of microclimatic temperatures surrounding all Danish cattle farms.MethodsWe calculated the hourly microclimatic temperatures at potential vector-resting sites within a 500 m radius of 22,004 Danish cattle farms for the months April to November from 2000 to 2016. We then modeled the daily EIP of Schmallenberg virus at each farm, assuming vectors choose resting sites either randomly or based on temperatures (warmest or coolest available) every hour. The results of the model output are presented as 17-year averages.ResultsThe difference between the warmest and coolest microhabitats at the same farm was on average 3.7 °C (5th and 95th percentiles: 1.0 °C to 7.8 °C). The mean EIP of Schmallenberg virus (5th and 95th percentiles) for all cattle farms during spring, summer, and autumn was: 23 (18–33), 14 (12–18) and 51 (48–55) days, respectively, assuming Culicoides select resting sites randomly. These estimated EIP values were considerably shorter than those estimated using standard meteorological temperatures obtained from a numerical weather prediction model for the same periods: 43 (39–52), 21 (17–24) and 57 (55–58) days, respectively. When assuming that vectors actively select the coolest resting sites at a farm, the EIP was 2.3 (range: 1.1 to 4.1) times longer compared to that of the warmest sites at the same farm.ConclusionsWe estimated a wide range of EIP in different microclimatic habitats surrounding Danish cattle farms, stressing the importance of identifying the specific resting sites of vectors when modeling vector-borne disease transmission. We found a large variation in the EIP among different farms, suggesting disease transmission may vary substantially between regions, even within a small country. Our findings could be useful for designing risk-based surveillance, and in the control and prevention of emerging and re-emerging vector-borne diseases.

KW - Schmallenberg virus, Microclimatic temperatures, EIP, Spatio-temporal modeling, Denmark, Vector-borne diseases, Transmission, Cattle farm, Culicoides spp., Resting sites

U2 - 10.1186/s13071-018-2709-8

DO - 10.1186/s13071-018-2709-8

M3 - Journal article

C2 - 29506571

VL - 11

JO - Parasites & Vectors

JF - Parasites & Vectors

SN - 1756-3305

M1 - 128

ER -

ID: 211099810