Spontaneous Phage Resistance in Avian Pathogenic Escherichia coli

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 1,94 MB, PDF-dokument

  • Patricia E. Sørensen
  • Sharmin Baig
  • Marc Stegger
  • Ingmer, Hanne
  • An Garmyn
  • Patrick Butaye

Avian pathogenic Escherichia coli (APEC) is one of the most important bacterial pathogens affecting poultry worldwide. The emergence of multidrug-resistant pathogens has renewed the interest in the therapeutic use of bacteriophages (phages). However, a major concern for the successful implementation of phage therapy is the emergence of phage-resistant mutants. The understanding of the phage-host interactions, as well as underlying mechanisms of resistance, have shown to be essential for the development of a successful phage therapy. Here, we demonstrate that the strictly lytic Escherichia phage vB_EcoM-P10 rapidly selected for resistance in the APEC ST95 O1 strain AM621. Whole-genome sequence analysis of 109 spontaneous phage-resistant mutant strains revealed 41 mutants with single-nucleotide polymorphisms (SNPs) in their core genome. In 32 of these, a single SNP was detected while two SNPs were identified in a total of nine strains. In total, 34 unique SNPs were detected. In 42 strains, including 18 strains with SNP(s), gene losses spanning 17 different genes were detected. Affected by genetic changes were genes known to be involved in phage resistance (outer membrane protein A, lipopolysaccharide-, O- antigen-, or cell wall-related genes) as well as genes not previously linked to phage resistance, including two hypothetical genes. In several strains, we did not detect any genetic changes. Infecting phages were not able to overcome the phage resistance in host strains. However, interestingly the initial infection was shown to have a great fitness cost for several mutant strains, with up to ∼65% decrease in overall growth. In conclusion, this study provides valuable insights into the phage-host interaction and phage resistance in APEC. Although acquired resistance to phages is frequently observed in pathogenic E. coli, it may be associated with loss of fitness, which could be exploited in phage therapy.

OriginalsprogEngelsk
Artikelnummer782757
TidsskriftFrontiers in Microbiology
Vol/bind12
ISSN1664-302X
DOI
StatusUdgivet - 2021

Bibliografisk note

Funding Information:
This work was funded by the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie Grant agreement no. 765147.

Publisher Copyright:
Copyright © 2021 Sørensen, Baig, Stegger, Ingmer, Garmyn and Butaye.

ID: 289326069