Magnetic nanomaterials as biocatalyst carriers for biomass processing: Immobilization strategies, reusability, and applications

Research output: Contribution to journalReviewResearchpeer-review

Documents

  • Fulltext

    Final published version, 10.8 MB, PDF document

Environmental concerns, along with oil shortages, have increased industrial interest in biomass conversion to produce biofuels and other valuable chemicals. A green option in biomass processing is the use of enzymes, such as cellulases, hemicellulases, and ligninolytic (laccase and peroxidases), which have outstanding specificity toward their substrates and can be reused if immobilized onto magnetic nanocarriers. Numerous studies report the biocatalysts’ performance after covalent binding or adsorption on differently functionalized magnetic nanoparticles (MNPs). Func-tionalization strategies of MNPs include silica-based surfaces obtained through a sol–gel process, graphene oxide-based nanocomposites, polymer-coated surfaces, grafting polymer brushes, and others, which have been emphasized in this review of the immobilization and co-immobilization of enzymes used for biomass conversion. Careful analysis of the parameters affecting the performance of enzyme immobilization for new hybrid matrices has enabled us to achieve wider tolerance to thermal or chemical stress by these biosystems during saccharification. Additionally, it has enabled the application of immobilized laccase to remove toxic organic compounds from lignin, among other recent advances addressed here related to the use of reusable magnetic carriers for bioderived chemical manufacturing.

Original languageEnglish
Article number133
JournalMagnetochemistry
Volume7
Issue number10
Number of pages22
DOIs
Publication statusPublished - 2021

Bibliographical note

Funding Information:
Acknowledgments: The authors acknowledge Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES) and Conselho Nacional de Pesquisa (CNPq).

Funding Information:
The authors acknowledge Coordena??o de Aperfei?oamento de Pessoal de Ensino Superior (CAPES) and Conselho Nacional de Pesquisa (CNPq).

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

    Research areas

  • Biomass saccharification, Enzymatic hydrolysis, Magnetic core–shell, Nanosupport

ID: 306674081