First Report of a Foodborne Salmonella enterica Serovar Gloucester (4:i:l,w) ST34 Strain Harboring blaCTX–M–55 and qnrS Genes Located in IS26-Mediated Composite Transposon

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Extended-spectrum β-lactamases (ESBLs) production and (fluoro)quinolone (FQ) resistance among Salmonella pose a public health threat. The objective of this study was the phenotypic and genotypic characterization of an ESBL-producing and nalidixic acid-resistant Salmonella enterica serovar Gloucester isolate (serotype 4:i:l,w) of sequence type 34 (ST34) from ready-to-eat (RTE) meat products in China. Whole-genome short and long read sequencing (HiSeq and MinION) results showed that it contained blaCTX–M–55, qnrS1, and tetB genes, with blaCTX–M–55 and qnrS1 located in chromosomal IS26-mediated composite transposon (IS26–qnrS1–IS3–Tn3–orf–blaCTX–M–55–ISEcp1–IS26). The same genetic structure was found in the chromosome of S. enterica subsp. enterica serovar Typhimurium strain and in several plasmids of Escherichia coli, indicating that the IS26-mediated composite transposon in the chromosome of S. Gloucester may originate from plasmids of E. coli and possess the ability to disseminate to Salmonella and other bacterial species. Besides, the structural unit qnrS1–IS3–Tn3–orf–blaCTX–M–55 was also observed to be linked with ISKpn19 in both the chromosomes and plasmids of various bacteria species, highlighting the contribution of the insertion sequences (IS26 and ISKpn19) to the co-dissemination of blaCTX–M–55 and qnrS1. To our knowledge, this is the first description of chromosomal blaCTX–M–55 and qnrS in S. Gloucester from RTE meat products. Our work expands the host range and provides additional evidence of the co-transfer of blaCTX–M–55 and qnrS1 among different species of Salmonella through the food chain.

OriginalsprogEngelsk
Artikelnummer646101
TidsskriftFrontiers in Microbiology
Vol/bind12
ISSN1664-302X
DOI
StatusUdgivet - 2021

Bibliografisk note

Funding Information:
This work was supported by the National Natural Science Foundation of China (Grant Nos. 32001796 and 31901789), Applied Basic Research Foundation of Guangdong Province (Grant No. 2020A1515010218), and the Guangzhou Science and Technology Planning Project (Grant No. 202002030145).

Publisher Copyright:
© Copyright © 2021 Li, Olsen, Song, Xiao, Wang, Meng and Shi.

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 269605823