Occurrence of Extended-Spectrum β-Lactamases, Plasmid-Mediated Quinolone Resistance, and Disinfectant Resistance Genes in Escherichia coli Isolated from Ready-To-Eat Meat Products

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Occurrence of Extended-Spectrum β-Lactamases, Plasmid-Mediated Quinolone Resistance, and Disinfectant Resistance Genes in Escherichia coli Isolated from Ready-To-Eat Meat Products. / Li, Lili; Ye, Lei; Kromann, Sofie; Meng, Hecheng.

I: Foodborne pathogens and disease, Bind 14, Nr. 2, 01.02.2017, s. 109-115.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Li, L, Ye, L, Kromann, S & Meng, H 2017, 'Occurrence of Extended-Spectrum β-Lactamases, Plasmid-Mediated Quinolone Resistance, and Disinfectant Resistance Genes in Escherichia coli Isolated from Ready-To-Eat Meat Products', Foodborne pathogens and disease, bind 14, nr. 2, s. 109-115. https://doi.org/10.1089/fpd.2016.2191

APA

Li, L., Ye, L., Kromann, S., & Meng, H. (2017). Occurrence of Extended-Spectrum β-Lactamases, Plasmid-Mediated Quinolone Resistance, and Disinfectant Resistance Genes in Escherichia coli Isolated from Ready-To-Eat Meat Products. Foodborne pathogens and disease, 14(2), 109-115. https://doi.org/10.1089/fpd.2016.2191

Vancouver

Li L, Ye L, Kromann S, Meng H. Occurrence of Extended-Spectrum β-Lactamases, Plasmid-Mediated Quinolone Resistance, and Disinfectant Resistance Genes in Escherichia coli Isolated from Ready-To-Eat Meat Products. Foodborne pathogens and disease. 2017 feb. 1;14(2):109-115. https://doi.org/10.1089/fpd.2016.2191

Author

Li, Lili ; Ye, Lei ; Kromann, Sofie ; Meng, Hecheng. / Occurrence of Extended-Spectrum β-Lactamases, Plasmid-Mediated Quinolone Resistance, and Disinfectant Resistance Genes in Escherichia coli Isolated from Ready-To-Eat Meat Products. I: Foodborne pathogens and disease. 2017 ; Bind 14, Nr. 2. s. 109-115.

Bibtex

@article{6ad62d0536cc4efcba5340954b34c150,
title = "Occurrence of Extended-Spectrum β-Lactamases, Plasmid-Mediated Quinolone Resistance, and Disinfectant Resistance Genes in Escherichia coli Isolated from Ready-To-Eat Meat Products",
abstract = "There are growing concerns about the coselection of resistance against antibiotics and disinfectants in bacterial pathogens. The aim of this study was to characterize the antimicrobial susceptibility profiles, the prevalence of extended-spectrum β-lactamases (ESBLs), plasmid-mediated quinolone resistance genes (PMQRs), and quaternary ammonium compound resistance genes (QACs) in Escherichia coli isolated from ready-to-eat (RTE) meat products obtained in Guangzhou, China, and to determine whether these genes were colocalized in the isolates. A total of 64 E. coli isolates were obtained from 720 RTE meat samples. Multidrug resistance was observed in 70.3% of the isolates. A 100% of the isolates were resistant to benzalkonium chloride. Four types of β-lactamase genes were identified in the 16 ESBL-producing E. coli isolates: blaSHV (9.4%), blaTEM (7.8%), blaCTX-M-15 (1.6%), and blaCTX-M-9 (1.6%). PMQRs were present in nine isolates (14.1%), with aac(6')-Ib-cr and qnrD detected in eight (12.5%) and one isolate (1.6%), respectively. The QACs ydgE/ydgF were most commonly present (60.9%), while qacF, mdfA, sugE(p), emrE, qacG, sugE(c), and qacE were less prevalent (1.6%-18.8%). Coexistence of ESBLs and/or PMQRs with QACs was found in 21 isolates (32.8%). The aac(6')-Ib-cr and blaCTX-M-15 genes were found to be cotransferred with qacF in one isolate. The data obtained in this study indicate that ESBLs and/or PMQRs with QACs can not only be colocalized but can also be cotransferred in E. coli isolates from RTE meat products. The E. coli isolates with multiple antimicrobial resistance genes may transmit to humans through food chain and thus require further investigation and increased awareness.",
author = "Lili Li and Lei Ye and Sofie Kromann and Hecheng Meng",
year = "2017",
month = feb,
day = "1",
doi = "10.1089/fpd.2016.2191",
language = "English",
volume = "14",
pages = "109--115",
journal = "Foodborne Pathogens and Disease",
issn = "1535-3141",
publisher = "Mary AnnLiebert, Inc. Publishers",
number = "2",

}

RIS

TY - JOUR

T1 - Occurrence of Extended-Spectrum β-Lactamases, Plasmid-Mediated Quinolone Resistance, and Disinfectant Resistance Genes in Escherichia coli Isolated from Ready-To-Eat Meat Products

AU - Li, Lili

AU - Ye, Lei

AU - Kromann, Sofie

AU - Meng, Hecheng

PY - 2017/2/1

Y1 - 2017/2/1

N2 - There are growing concerns about the coselection of resistance against antibiotics and disinfectants in bacterial pathogens. The aim of this study was to characterize the antimicrobial susceptibility profiles, the prevalence of extended-spectrum β-lactamases (ESBLs), plasmid-mediated quinolone resistance genes (PMQRs), and quaternary ammonium compound resistance genes (QACs) in Escherichia coli isolated from ready-to-eat (RTE) meat products obtained in Guangzhou, China, and to determine whether these genes were colocalized in the isolates. A total of 64 E. coli isolates were obtained from 720 RTE meat samples. Multidrug resistance was observed in 70.3% of the isolates. A 100% of the isolates were resistant to benzalkonium chloride. Four types of β-lactamase genes were identified in the 16 ESBL-producing E. coli isolates: blaSHV (9.4%), blaTEM (7.8%), blaCTX-M-15 (1.6%), and blaCTX-M-9 (1.6%). PMQRs were present in nine isolates (14.1%), with aac(6')-Ib-cr and qnrD detected in eight (12.5%) and one isolate (1.6%), respectively. The QACs ydgE/ydgF were most commonly present (60.9%), while qacF, mdfA, sugE(p), emrE, qacG, sugE(c), and qacE were less prevalent (1.6%-18.8%). Coexistence of ESBLs and/or PMQRs with QACs was found in 21 isolates (32.8%). The aac(6')-Ib-cr and blaCTX-M-15 genes were found to be cotransferred with qacF in one isolate. The data obtained in this study indicate that ESBLs and/or PMQRs with QACs can not only be colocalized but can also be cotransferred in E. coli isolates from RTE meat products. The E. coli isolates with multiple antimicrobial resistance genes may transmit to humans through food chain and thus require further investigation and increased awareness.

AB - There are growing concerns about the coselection of resistance against antibiotics and disinfectants in bacterial pathogens. The aim of this study was to characterize the antimicrobial susceptibility profiles, the prevalence of extended-spectrum β-lactamases (ESBLs), plasmid-mediated quinolone resistance genes (PMQRs), and quaternary ammonium compound resistance genes (QACs) in Escherichia coli isolated from ready-to-eat (RTE) meat products obtained in Guangzhou, China, and to determine whether these genes were colocalized in the isolates. A total of 64 E. coli isolates were obtained from 720 RTE meat samples. Multidrug resistance was observed in 70.3% of the isolates. A 100% of the isolates were resistant to benzalkonium chloride. Four types of β-lactamase genes were identified in the 16 ESBL-producing E. coli isolates: blaSHV (9.4%), blaTEM (7.8%), blaCTX-M-15 (1.6%), and blaCTX-M-9 (1.6%). PMQRs were present in nine isolates (14.1%), with aac(6')-Ib-cr and qnrD detected in eight (12.5%) and one isolate (1.6%), respectively. The QACs ydgE/ydgF were most commonly present (60.9%), while qacF, mdfA, sugE(p), emrE, qacG, sugE(c), and qacE were less prevalent (1.6%-18.8%). Coexistence of ESBLs and/or PMQRs with QACs was found in 21 isolates (32.8%). The aac(6')-Ib-cr and blaCTX-M-15 genes were found to be cotransferred with qacF in one isolate. The data obtained in this study indicate that ESBLs and/or PMQRs with QACs can not only be colocalized but can also be cotransferred in E. coli isolates from RTE meat products. The E. coli isolates with multiple antimicrobial resistance genes may transmit to humans through food chain and thus require further investigation and increased awareness.

U2 - 10.1089/fpd.2016.2191

DO - 10.1089/fpd.2016.2191

M3 - Journal article

C2 - 27870554

VL - 14

SP - 109

EP - 115

JO - Foodborne Pathogens and Disease

JF - Foodborne Pathogens and Disease

SN - 1535-3141

IS - 2

ER -

ID: 170141302